Tuesday, June 5, 2018

CRT and Magnets Exhibit

This Cathode Ray Tube + Magnets exhibit started off with a couple of CRT monitors that were gathering dust in storage. I was asked to consider putting them out in the main space of the makerspace. I decided I would only allow this if they did something. I set out to decide on what that something would be. It turned into a fun, easy, accessible to all ages exhibit that we now turn on for all the tours we lead through this makerspace. It is a great way to quickly and cheaply construct a meaningful interactive science exhibit to add to your collection.

Here's a document I put together to explain what's happening. I taped this to one of the TV antenna (the antenna is not used) so it stays front and center to the exhibit and people are encouraged to actually read it. Here's a lower quality image of the same document so you can see it embedded in the post.

Here's the bill of materials:

  • CRT television. You may have to turn to eBay or Craigslist. These may only get harder to acquire with time.
  • If the CRT has VHF/UHF inputs, you'll need a box like this one to convert the signal to composite video: https://www.amazon.com/dp/B0014KKV7W/
  • For the camera, the backup camera is cheap and outputs a composite video signal over RCA connectors. https://www.ebay.com/itm/CMOS-Car-Rear-View-Reverse-Backup-Camera-Parking-Night-Vision-Waterproof-7-LED/291918612347
  • If you'd like to place the camera elsewhere, you can get a cheap 2.4GHz transmitter like this one https://www.ebay.com/itm/2-4G-Wireless-Video-Transmitter-Receiver-Kit-for-Car-Rear-Backup-View-Camera/163041336550
  • A powerful neodymium magnet. You want something strong enough to have an effect and a good size to be easy to handle. Something like 0.5 inch diameter and 0.5 inch height seems like a good size to me, but I'd suggest just seeing what's available and trying it. You can always stack up multiple smaller magnets.
Assembly is just a question of plugging everything in to power and getting the signal in to the TV. Note that the backup camera requires a little work to plug in; it is designed to be hooked up to a 12V car battery connection point. You will need a 12VDC wall adapter if it does not come with one. You will need to make sure you have the red/positive connector and black/negative connector going to the right places. You will probably need to solder at least one connection, or use another strategy to connect the wires.

The magnet should be protected with something soft to avoid it hitting against metal and breaking or pinching fingers. I used two furniture feet and some masking tape. I also suggest putting it on a string so it doesn't wander off.

Cable management was the longest part of the project. I zip-tied all the extra length of cabling in back of the assembly. A single switch controls the extension cord to which the entire unit is plugged in. Note the CRTs make a high pitched noise that some people don't like to hear all day, so I don't leave it on all the time, since the main room of the makerspace is also a meeting and study space.

The cameras are taped to the top of the CRT and pointing at brightly colored pieces of paper. This is important because the magnet effect is not nearly as visible on black & white images.

An additional, optional modification I made to the back up cameras was the removal of the infrared lights that it contains in order to provide better visibility at night. The camera was very warm and when the IR lights activated, which sometimes happened if the exhibit experienced low light conditions, the image was washed out. I opened the unit and de-soldered the IR LEDs. My original plan involved putting gaffer's tape over the IR LEDs, but that seemed to make the camera heat up even more. There is a sensor inside the unit and in bright lighting the infrared LEDs are not activated, so this is not necessarily something that needs to be addressed for the exhibit to function.

It is also important to note that the backup camera is designed to mirror images. Note the sign in the image above is printed as a mirror image in order to show up correctly on the display. The backup distance overlay is another artifact of the choice to use a backup camera; I find it is fun and adds to the color distortion effect since it is displayed in bright colors.

Wednesday, June 7, 2017

Indoors Navigation Robot ("Driving Drawers") Post 2

This post is about the path planning algorithm for the robot.

Because the robot is a non-holonomic, non-radially symmetric, non-zero turn radius type of vehicle, the path planning problem was fairly difficult.

I was struggling to find a readymade solution to the following problem: plot a curve between obstacles, with a constraint on the sharpest allowable curvature in the path.

For a setting with no obstacles, with a minimum turn radius specified, and where starting and ending state are specified as coordinate and angle in 2D space, I found Reeds-Shepp, which was already implemented in Python on GitHub. https://github.com/ghliu/pyReedsSheppReeds-Shepp Curves

I briefly considered using Rapidly Exploring Random Trees to search for solutions in this problem space, but decided on something different instead after reading some literature and testing some code. I think some of the variants I've seen published of RRTs would work nicely, but I didn't want to implement them in Python from scratch. Two repositories I looked at when making this decision:

I decided to go with A* for search. To prepare my problem for that, I first discretized the map of obstacles (represented by polygons) using a visibility graph. I built the visibility graph using another Python repository pyvisgraph. I spent several days hunting down bugs in the code, coming up with one case of rounding error and one case of logical error that were causing problems in my setup. I opened up a few "Issues" through the GitHub portal and the author will be able to fix them. I considered doing a pull request but for just a few lines of code like that I figured the Issues would suffice. After fixing the bugs I provided support for interior polygons and adding obstacles to the visibility graph without recomputing, so I guess I should probably clean it all up and do a real pull request eventually.

I also had to discretize the robot angle at this point. I decided to go with 4 of what I called 'cones': North, East, South, West. The code has this parameter as K, so I call them K-cones (you can just as easily specify five cones, but then they can be harder to refer to casually when describing the solution). Since Reeds-Shepp takes in an exact angle, when computing the cost of a path from (start point, start cone), to (goal point, goal cone), I try all four combinations of clockwise and counterclockwise limits of the start cone and goal cone. Then I take the worst score and use that as the cost. Paths intersecting the obstacle map are ignored in this step, so they don't count towards the concept of the worst score.

Then I searched over this space with A*, and found solutions in the form of a list of (location, cone). But to resolve this into a navigable path still required resolving the cones (North, East, South, West) into angles. If there are n steps in the path, and we choose to sample d regularly spaced angles within a cone to find the best overall path length, then the size of the space is d raised to the power n. It isn't easy or necessarily possible to make n any smaller than it already is--so keep d small. I found that even for d=2 (checking just the most clockwise and counterclockwise limit of the cone) could find a solution. The difference between best total path length found were minimal anyhow.

I used Shapely to handle geometry related tasks like union-ing polygons together, checking for intersections, and so forth. I used matplotlib for drawing things to the screen.

You had to read all that, so here are some pictures!

An example solution after the angles have been resolved.

An easy solution, where the goal is immediately reached from the start point with a single Reeds-Shepp curve.

Here's a messy picture of all the edges in the graph for a particular setup. The pink things represent the cones.

This picture that I saved at some point in my work represents paths from points on the visibility graph that intersect the walls of this empty room. The intersecting sections are shown in red.
The strongest thing I can say for my hacked together system, "A* over Reeds-Shepp with K-Cones" is that is seems to work in all the cases I need it to work. I can't say anything about the optimality of the solution or even about whether a solution will be found if it exists. Computing the visibility graph and edge costs on the visibility graph when expanded for the 4 cones on each point takes about ten seconds on my laptop, for what that is worth. It can be saved and reloaded for future use, assuming the obstacle map hasn't changed.

I'm taking a break from this project to prepare for the Advanced Topics in CS class that I will be teaching this summer (high school grade levels, but college level materials). When I come back to this project, I will take the hardware from the last post, the path finding from this post, and a few bits of math I've worked out in my notes, to put the whole thing together into a robot that navigates from room to room using ArUco tags

Indoors Navigation Robot ("Driving Drawers") Post 1

[Foreword: you may notice the fonts are mismatched in this post. Or maybe you noticed that the images in all the posts in this blog, when viewed on a larger screen (as opposed to a small mobile device screen), are placed haphazardly within the body of the post. This is because Blogger leaves much to be desired when it comes to the WYSIWYG post editor. In part because WYS ("What you see") is not always WYG ("what you get") in the context of Blogger's post editor, but also because there are very limited options for aesthetic image layouts in the body of a post. I am planning a Jekyll based webpage for this blog in the general future that will fix these problems. Until then, this is a cheap and easy way to make sure I keep a blog at all.]

I had an idea for a chest of drawers that would drive to my location in a space (assumes no stairs).

Here's the first part of my progress on that project.

Physical Build

I started by dissecting my collection of Roombas and taking the wheels from two different models and hot gluing them, along with some support material, to the base of a plastic chest of drawers.

I purchased a Raspberry Pi 3 and a PiCam, and while I waited I put together a 3D pan-tilt design from Thingiverse. I'll provide a link (link to thing), but keep in mind I do not recommend this design. Unless your 3D printer is very precise, you'll have to do quite a bit of filing and sanding to get it to go together. The pan servo will absorb all the impact whenever it hits something, and will fail (mine did). If you can find a ring of the right thickness and diameter to stick in between the orange disc and blue plate in the photo, the problem is mitigated (I used a bearing I found in a bin--way overkill as it isn't even acting as a bearing--but a quicker solution than cutting my own ring on the lathe).

Not entirely certain of the layout I wanted, I just taped everything in place with masking tape. The battery is stored underneath, in the topmost drawer of the robot. It's a 30,000 mAh battery I bought for use with my smart phone. It has a port that will source 2.5A, which is needed by the Raspberry Pi. I paid about $75 for this model; you should be able to find comparable batteries by other brands if that one is not available (sometimes, when an item is out of stock, a few vendors will offer it for an inflated price, so beware. The price on Amazon for this model was briefly $399 before dropping to $69.99 again). 
I pulled the Arduino Mega out of a project I'm not working on at the moment, though it is of course overkill for this application. I wasn't sure how many sensors and actuators I wanted on board, so this 54 I/O pin Arduino allows for quite a bit of room to grow the project. The Raspberry Pi 3 itself only has one PWM enabled pin available to me, so the Arduino is convenient for handling all the low level stuff. It talks to the Raspberry Pi over the USB. The micro servos are powered from the Arduino Mega which are in turned powered off the Raspberry Pi. The micro servos stall current is low enough for this to be possible with the Arduino Mega.

 The Roomba wheel motors are safe at 12 volts (the Roomba battery voltage), so I put another battery in the system just for them. The battery is a 3 cell Lithium Polymer battery, which measures in at roughly 11.1 volts when the battery needs to be recharged and 12.6V when the battery is fully charged. The motor drivers are L298 chips on those red-colored Sparkfun breakout boards, with the heatsinks mounted to them.

So at this point the robot was driving, but only in a straight line. Turns would drag at least one wheel and make a terrible noise. Only very slight turns worked. This was fairly predictable, but trying to make it work anyway was very much in keeping with my glue-and-tape, then iterate style of prototyping. Jesse helped me put together a steering mechanism in a very short amount of time. It worked, so that evening I took the robot out for an inaugural journey around Sector67, using it as a sort of telepresence robot as I controlled it from my desk.

Then I broke the steering mechanism gearmotor by switching it back and forth too fast when I got stuck in a corner. The gear before the final output shaft broke into a bunch of tiny pieces.

I replaced it with the gearmotor in the image above on the right that has the partly blue casing. Now that I had a working robot again, it was time to work on the high level path planning and code. I'll put that in the next post.

Sunday, May 7, 2017

FRC Machine Shop with Sector67

In April Sector67 volunteered to run a machine shop for both FIRST Robotics Seven Rivers Regional and St. Louis Worlds events. It had been a while since I participated in FRC in any form (though I did mentor an FTC team this year, which is another FIRST competition).

Here are some photos. Since I only took photos when there was a break in the work orders coming in to the shop (usually because there was some mandatory attendance event for teams), this photo set gives the impression that we were a lot less busy than we actually were.

Seven Rivers Regional one view of the machine shop

Seven Rivers Regional game field

Teaching lockpicking at the table photo left

St. Louis Worlds Machine shop front side, 3D printer and laser cutter with fume extractor

More stuff in the St. Louis machine shop setup

View of the St. Louis playing fields in the convention center arena

Monday, April 3, 2017

Giant Display and Home for my First Arduino

The extra large (6.5") seven segment display array pictured above has been at my desk for a long time now, but I never posted about it. Remembering how it came together is a fun walk through memory lane.

Central to this project is my very first Arduino. My boyfriend at the time bought it, spent an afternoon on it with a friend, and then decided he didn't want to do anything else with it and asked me if I wanted it. It is an Arduino Diecimila, and this must have been around 2008-2009, because I remember one of my first projects with Arduino was interfacing with an ultrasonic rangefinder and an optical encoder that year. It later become Swervy's brain. Memories of my freshman dorm remind me why students need hackerspaces:

I was a really bad roommate...I shared this room with my unfortunate roommate. The dividing line is supposed to be roughly in between the black backpack and black storage cube.

My 'hackerspace' at the time was a $99 refurbished Ryobi drill+circle saw, a $30 set of Ryobi drill bits,  a Radioshack soldering iron, and misc. things taken out of the dumpster from USC, along with some sensors I got from my FIRST robotics team and the aforementioned Arduino Diecimila.

Sophomore year of college, beginning of the spring semester, Sparkfun has a big promotional event/server load test. They were giving away one hundred $100 free orders (Sparkfun Free Day). I skipped that morning's Calculus lecture and hit refresh on the page until I won my free order. The four 6.5" red seven segment displays were in my cart for that order, along with a few other things including a Simon Says kit that taught me how to do surface mount soldering.

At some point in 2015 I dug up these parts and put it all together. The circuit is just a bunch of BJT transistors and some buttons to set the input. I never figured out what I wanted it to do, so I put it up on the wall and update it as a calendar, manually, whenever I come in to my office. The Arduino doesn't have enough output ports to handle all the digits at the same time so it enables/sets one at a time, repeatedly and very quickly. Very common solution to a common problem, but it was a fun afternoon project anyway. The wiring harness took the most time. I think I glued the whole thing to the wall with no consideration for whether I'd want to move it in the future. I'll have to tear it off the wall eventually, since Sector67 is getting a new building. Chris jokes sometimes that it looks like what the TSA might think is a bomb; this clock slightly predates the recent clock incident. Which also reminds me of this page which left a huge impression on me when I first read it in college and turned me into a fan.

Friday, March 31, 2017

Telegraph Sounder Player

Yesterday I put the finishing touches on my latest project, the telegraph sounder player.

Video link first if you want to see it in action before you read: https://www.youtube.com/watch?v=vKzZMfzuw68

The device on the left is the telegraph sounder player, and the device on the right is the telegraph sounder. The telegraph sounder itself is a vintage telegraph module. The player allows for up to four sounders to be plugged in to it, and plays back random snippets from text files loaded up on an SD card. It uses American Morse Code (as opposed to international). I loaded the SD card with excerpts from my favorite novels as well as full novels from Project Gutenberg.

The project was made for the owner of the telegraph sounder, Don. Don used to work as a telegrapher for a railroad company (US land based telegraph operations used American Morse code). He had a first version of the player built for him during the most recent Build Madison event and came back to Sector67 with notes for some features he would like for the next version.

Features I included in this telegraph player include: SD card playback, 4 sounder support, knob for speed of playback, separate knob for inter-sentence interval length, status led and ON/OFF toggle, CNC milled hardwood box with brass corners, battery power (est. 10 hours of playback), battery charging circuit onboard.

Design process in brief:

I had four 5V relays I found in a bin here at Sector, so I chose to support up to 4 sounders and to use a 5V Arduino for the brains. The relays are each switched by a BJT transistor circuit, and when switched they connect the sounder port to the battery pack.

The ports are barrel jack connectors with a 10uF capacitor across the leads and a high power rating. low resistance resistor. The resistor is mostly just in case the leads going to the telegraph are placed so that they are touching each other.

I had been playing around with trying to minimize the currents induced by the sounder turning off (the clack, as opposed to the click). A large ferrite choke close to the telegraph with many windings of the connector cable worked, but was a little unwieldy. The capacitor doesn't entirely solve the problem, but helps make the clack sharper. Too large a value and the clack actually bounces presumably as the capacitor charges on the induced current, and then discharges back into the sounder and re-enables it somewhat. The 'problem' is in any case limited to the Arduino resetting only when connected to a computer during the disconnection of the sounder, so it was possible to ignore. 

The SD card is connected through a bi-directional level converter. The Arduino has limited memory, so the code handles things by grabbing small chunks of the files into four small buffers for the four ports. The Morse codes are stored as 2-byte unsigned int objects, with the exception of a few special 4-byte unsigned long objects for some of the punctuation. The code can be found here: Arduino Code.

Access to the Arduino is through the bottom of the box, which is attached with screws to corners that are glued inside the box.

The project uses two battery cells that each have overcurrent and undervoltage protection built in. The charging circuit is as described here.

You can find more photos of the project and an additional write up here: https://imgur.com/gallery/fIBFZ

And a video here:

Friday, March 17, 2017

Painting Robot Compilation

A while back somebody donated an old robot arm kit to Sector67. I built a small model of it with glue, tape, foamboard, and potentiometers, and hooked it up to an Arduino. The project is very simple, but it has been very popular at science fairs (and has survived many hours of use requiring minimal fixes only). Here's a compilation video.

Friday, March 10, 2017


Another set of magnetic tile polyhedra. This time, three different trapezohedra.




I used this resource to define the kite and dihedral angles, but the hexagonal and heptagonal did not work out (and I believe the octagonal also has issues). Fixing them is on my to do list. I plan to write a script that actually generates them from the antriprisms.

Tuesday, March 7, 2017

Talking Calipers 2

Preface: Voting on a contest I submitted this to is open right now. You can vote once a day through this link. http://review.wizehive.com/voting/view/infypublic2017/47311/4496312/0

Before going all in on the research for my minimal-cost minimal-footprint all on one custom PCB version of the Talking Calipers, I went through my bin of parts and made one more with just what I had already available. It uses:

The video demonstrates that the reading is taken when the button is pressed, so the display can potentially change to reflect that the measurement has changed since the reading began being spoken aloud. The button is a limit switch super glued next to the thumb wheel.

It was a useful learning experience to build, and it was good to have it done quickly for demos and such, but in the end I built something very, very similar to the Adafruit Wave shield (https://www.adafruit.com/product/94) but slightly more expensive.

Feature list (all were tested on the breadboard, though some haven't yet migrated to the somewhat portable prototype):
  • Rechargeable battery on board, recharges via USB
  • Separate amp with lower gain for headphones for hearing safety
  • Headphone detection for automatic headphone/speaker output switching
  • SD card for easy file loading--can be made to work in any language by switching out files
  • Relay mutes headphones to reduce pop
  • Sleep mode that wake up on request for a reading, for longer battery life
Features not yet added:
  • Filter to get rid of a hum caused whenever the SD card is read
  • Low battery indicator (through sound or vibration ideally!) (though thanks to a circuit built in to the battery header, it will turn itself off to protect from under-voltage to the battery)
  • Inches mode protocol is different and currently reads off incorrectly
  • Audio files and code support for reading numbers more naturally (currently reads off each digit separately)
  • Change sleep mode to trigger only if the readings are constant and the button is not pressed for a certain time interval (right now just based on button)
I actually recorded my voice for this project since I couldn't find everything I wanted online. I used http://www.audacityteam.org/ to create the files and then used http://sox.sourceforge.net/ to make sure the files were 44.1kHz sampling rate and 16 bit sample size and then volume adjusted to a max volume that did not clip. (Note: the wav shield played most any wav files I could find fine, but the Teensy audio library was picky about the settings, necessitating use of the sox tool).

I estimate the battery life at about 10 hours of use (assuming it never enters sleep mode). The main power switch does lose the zeroing, but is convenient to have (out of the box, these calipers draw enough current to drain the coin cell in half a year to a year, unless the battery is removed). Auto-entering sleep mode when the user is away helps extend the battery life even more.